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Abstract. We study the branching s m m e  of very large DUL dusters, of up to 100 million 
particles. The HofionShahler Ordering of the branches in these clusters shows a rehation 
towards a state with the stream numbers forming a geometric series. This behaviour is wmpared 
with those of several self-similar trees. It indicates that DLA clusters wnverge to topologically 
self-similar objects. 

1. Introduction 

This is one of several reports from the Yale group on the properties of very large clusters 
of off-lattice diffusion-limited aggregation (DLA). For the sake of completeness, let us recall 
the underlying process. In DLA growth, an ‘atom’ executes Brownian motion until it hits, 
and is attached to, the curve that bounds a given ‘target’ or ‘seed‘. Another atom is then 
launched, and the whole process repeats. Initially, the growth rule and the pattern are very 
simple, but both become extremely complex in time. 

Witten and Sander [l] believed that DLA clusters are self-similar, i.e. that their 
complication is about the same at all scales of observation that are sufficiently above 
the scale of the atom. More precisely, consensus arose that the clusters are ‘prefractal‘ 
approximations that eventually cross over to a self-similar structure. A prototype of such 
behaviour is given by the samples of a random walk, which are prefractal approximations 
that cross over to Brownian motion. In mathematics, this process of approximation is called 
weak, or vague, convergence; it is discussed in detail in [2, chapter 361. 

However, departures from self-similarity were soon observed (see [3,4]). A natural 
and tempting scenario assumes that the crossover to a seIf-similar range lies beyond the 
sample sizes investigated until very recently. We would like to elaborate on this scenario, 
by suggesting that the crossover to self-similarity may occur at different cluster sizes for 
different properties of DLA. Some characteristics may cross over quickly, for relatively small 
clusters, while others cross over slowly, for very large samples. 

This last scenario is not the only one possible. In [4], one of us has put forward 
an alternative to asymptotic self-similarity. This alternative assumes that as a DLA cluster 
grows, some properties of the cluster may attain a limit, but others may ‘drift’ without limit. 
It is indeed conceivable, at least in theory, that as sample size grows, some properties of 
DLA clusters do not attain a limit. 

With the above ideas in the background, the Yale group has undertaken a systematic 
study of very large off-lattice DLA clustek. One of the aims set is to determine which 
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properties develop the signatures of self-similarity, and which fail to do so. Part of the 
study is based on 50 clusters of 1 million particles, while another part is based on smaller 
numbers of 100 million particle clusters. 

In theoretical off-lattice DLA, i.e. when the incoming particles perform Brownian motion 
in the continuous plane, an incoming particle adheres to one and only one particle in the 
cluster. This gives rise to a tree structure, with the initial nucleus particle as the root and 
each particle being the descendant in the tree of the particle on which it stuck to in its 
aggregation to the cluster. In practice, due to limited computer precision, there is a finite 
probability that a new particle will come in contact with more than one particle in the 
cluster. In our simulations, the resulting closed loops are of negligible number. In the 
case of on-lattice DLA, many loops are present, although even those may be disposed of by 
arbitrarily choosing a unique parent for a new particle sticking to the cluster. 

For the sake of background and 
comparison and because of their intrinsic interest, the paper also discusses several self- 
similar tree constructions for which exact results exist. 

We begin with a statistical study of branching rates in DLA clusters, i.e., the number of 
child particles associated with each parent particle. These rates seem to be constant during 
its growth. The branching rates are also homogenous spatially, at different distances from 
the origin. These results are consistent with self-similarity. 

Next we define and study the branches of the DLA clusters from the viewpoint of 
HortonStrahler ordering [5,6]. Several authors have tackled this task 17-91, However, 
our analysis of very large DLA clusters shows that the earlier results concemed transients 
in the growth process. Our simulations show that numerical values related to the Horton- 
Strahler ordering do not relax to constant values until the clusters attain sizes of about 
200000 particles. Compared with what is known for other self-similar branching structures, 
our findings show that certain structural aspects of very large DLA clusters do converge to 
signatures of self-similarity. Recently Ossadnik [lo] studied properties of the branching 
structure of large DLA clusters. His work was mainly focused on metric properties of the 
clusters, while the issues addressed here aie almost purely topological. 

In an appendix we sketch the methods we use to simulate extremely large DLA clusters, 
in particular those of 100 million particles. 

This article centres on off-lattice DLA clusters. 

2. HortonStrahler ordering of the branches of a tree 

To study river networks, Horton [5] devised a scheme for indexing the hierarchical structure 
of the streams. Streams starting from the sources of a river network are assigned the order 
1 and, moving downstream, a confluence of streams raises the order of the resulting stream. 
Strahler [6] slightly modified this ordering scheme, to make it independent of metric or 
directional properties of the streams. Either scheme applies to all tree-like structures, where 
the terms lea$ branch and root replace the corresponding terms in river networks: source, 
stream and outlet This work uses the Strahler ordering scheme. 

(1) Each leaf is assigned the order i = 1. 
(2)  The order i of a subsequent branch is determined by the orders i l ,  iz of its two sub- 

branches: if il # i2 then i = max(il, iz}; otherwise i = il + 1. 
When the order of a branch is q u a l  to that of one of its sub-branches, it is considered 

to be a continuation of this branch, otherwise it is considered to be a new branch. The 

Given a rooted tree structure, Strahler orders the branches recursively 
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order of a whole tree is defined to be the order of the root, its lowest-lying branch. When 
a branch has more than two sub-branches, only the two of highest order are considered. 

Consider the number of branches Ni of given Strahler order i in a tree (stream numbers). 
N I  is equal to the number of leaves. If I is the order of the whole tree (i.e. of its root) then 
NI = 1. The bifurcation ratio Bi of branches of order i and i + 1 is defined by 

Bi = N ; / N ; : + l .  (1) 

The geometric mean of the B;’s is 

Evidently, the Strahler analysis disregards metric properties of river networks and 
focuses on the topological properties pertaining to their tree-like structure. Yet this partial 
information might point out any universal behaviour of such branching structures. 

Studies show that for many river networks, the stream numbers (Nil  are very well 
approximated by a geometric series 

Ni B1-i (3) 

otherwise stated as 

B; % B (4) 

for all i. The observed values of B for different river networks vary between 3 and 5. 
Using variants of self-avoiding random walks in two dimensions to generate tree-like 

models of river networks, several authors [ll-141 found bifurcation ratios varying between 
3.63 and 4.11 , depending on the variant. The numbers of lowest order streams-far from 
the roots-did form geometric series. 

3. Strahler ordering of self-similar trees 

The stream numbers are very easily computed for strictly self-similar trees constructed by 
recursive processes. 

The simplest example is a complete binary tree, where each node branches in two. For 
a tree of height I the stream numbers are 

(5) N .  - 7-14 , -  
forming a geometric series. 

Similarly, a Koch tree 1151, where each tip branches into 3 branches, yields Bi = 3 for 
all i. 

The self-similar tree introduced by Mandelbrot and Vicsek [I61 is more complex, and 
instructive. In the underlying recursive procedure, each line segment of length A is replaced 
by a line segment with a branch of length h / 2  rooted in its middle. This iterative procedure 
leads to a self-similar fractal tree of self-similarity dimension D = log3/log2. Figure 1 
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F i r e  L The lint three siages of iteration of the self-similar fmcfal free of Mandelbrot and 
Vicsek [lq. 

shows the first three steps in the construction. After the tth iteration of this substitution 
rule, the stream numbers are given by the recursion relation 

for i 6 t, with the initial conditions 

The solution of this recursion relation is 

i , < t + l  1 f i+l 4 3  - + 11 N: = 2 
I o  i r t + l .  

Therefore, at any step t of the iteration, and for any value of i 6 t ,  the bifurcation ratios 
are 

= [++t + 11 / [3+i + 11 = 3 + 0 ( 3 - 9  , 

As long as t >> i, the bifurcation ratios tend asymptotically to 3. Note that the order of the 
whole tree at any stage of the iteration is Z = t + 1. Denote by n the number of first order 
branches at time t, n = Ni .  The order I of the whole tree depends logarithmically on n, 

z = 1 +log3(2n - 1). (10) 

When describing a structure as beiig statistically self-similar, one may start with the 
whole structure, and assume that any part of the system is similar, up to some scaling factor, 
to the whole. 

One may also start at the shortest length scale, eliminate this length scale by performing 
some kind of average, and then scale down the system. The resultant course-grained system 
is then supposed to be similar to the original one. This is the method used when performing 
coarsegraining or renormalization on spin systems: several spins are clumped together to 
form a pseudo-spin, and the system is scaled down. 

It is natural to use coarsegraining in the study of Strahler ordering. In the beginning, all 
branches of order 1 are at the tips of the tree. These are counted and then pruned off. The 
resulting tree has branches of order 7. at its tips. Pruning the tree recursively in this manner 
counts its stream numbers. If the tree is statistically self-similar, one should find that, at 
any stage, the pruned tree has the same statistical properties, up to some scale factor-the 
bifurcation ratio. 
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Figure 2. All five distinct binary trees of magnitude 4. 

The assumption that such a tree is self-similar has as a corollary that the bifurcation 
ratios are equal (and constant), at least asymptotically, and far from the root of the tree. 
However, the converse is not true. The bifurcation ratios may be asymptotically equal even 
if the tree fails to be self-similar, this being a necessary condition but not a sufficient one. 
This possibility will be very important when we come to DLA. 

An example of a statisitically self-similar structure is a random binary tree. Consider 
the ensemble of all distinct rooted binary trees of a given magnitude (number of sources, 
or leaves). Assigning to each of these Wees the same statistical weight defines the random 
binary tree model. Figure 2 shows all five distinct binary trees with four sources. 

Shreve [17] was first to use random binary trees as a model for river networks. He 
found empirically that the bifurcation ratios tend asymptotically to 4. He also noted that 
the typical order of a tree of magnitude n was very close to 

These findings were later substantiated by analytical studies of random binary trees by 
Kemp [18], Flajolet et al [19] and Meir et ai [ZO]. Moon [21] had shown that the ratio of 
the expectation values of successive stream numbers tended to 4. Wang and Waymire [22] 
have recently given proof that the first bifurcation ratio B1 tends to 4 in a stronger sense. 
Two of the authors of the present paper have shown [23] that this is also the c s e  for B2. 
This proof can be extended to higher, finite orders, but involves very cumbersome algebraic 
computations. It seems reasonable to expect the same property for any order i << I&. For 
branches lying close to the root of a tree, i.e. of order close to Z,, the bifurcation ratio is 
different from 4. The expectation value of the lowest-lying bifurcation ratio BI-I(= NI-,) 
is less than 4, becoming asymptotically a periodic function of log,~n, with mean 3.34 and 
amplitude 0.19 . . .  , ,  

4. Strahler ordering of the branches in DLA dusters 

The results we discuss now were gathered from DLA clusters of either 1 million or 100 
million particles. The 1 million particle clusters were generated as off-lattice DLA using 
a floating-point representation of particle positions. We use data' averaged over 50 such 
clusters. 

Generating 100 million particle clusters requires extremely long computing times and an 
enormous amount of memory. In order to minimize storage requirements, while conserving 
accuracy, particle positions were represented by a hierarchical tree .of lattices of increasingly 
fine resolution. These DLA clusters are on-lattice, but the lattice spacing at the lowest 'level of 
the hierarchy is & of a particle diameter. One can most probably neglect anisotropy effects, 
as an incoming particle may stick to another particle from approximately 100 directions. 

, -  
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Figure 3. Practions of the panicles with diffmnt n u m b  of descendants a5 a function of the 
number of particles in the DU cluster. The dishibutions M averaged over 50 clusters of 1 
million @CIS each. 

To deal with the long computation times, we replaced usual DLA by a variant we call 
parallel DLA. The clusters were generated on an IBM PVS computer which uses 32 RS/6000 
MSC processors in parallel, with 512 megabytes of shared random access memory. Each 
processor handed the random walk of a single particle. Particles attempting to stick to the 
cluster while in overlap with a newly attached particle of the cluster were rejected. It takes 
16 hours to generate a 100 million particle 'parallel DLA' cluster. Due to memory and time 
limitations, we did not sample these large clusters at many instants during their growth. 

Measurements of the mass-radius relation of these parallel DLA clusters conform with 
the known result of the fractaJ dimension of DLA 

D W 1.71. (12) 

Nevertheless, the overlap between the particles random-walking in parallel might induce 
some bias, relative to the original 'sequential' version of DLA-With particles sent one by 
one. A more detailed account of our methods of simulation, as well as comparison between 
'sequential' and 'parallel' DLA growth, will be presented elsewhere [24]. 

First we checked for the number of descendants of each particle. The number of 
descendants is hounded by 0 (for a particle at the edge of the cluster) and 5 (including 
the parent particle, 6 is the maximal number of equally sized disks which can surround a 
disk of the same size). Figure 3, which refers to averages over 50 DLA cluster of 1 million 
particles, plots the fraction of particles with k descendants, for 0 < k < 3, as a function 
of the number of particles in the clusters, as they are growing. The different curves begin 
with a transient which settles off when there are about 1000 particles in the cluster. The 
curves then remain constant throughout the growth of the clusters. The curve of the fraction 
of particles with 4 descendants is indistinguishable from the x-axis, as their number in a 
whole cluster of I million particles is less than 10. 

Retaining only the particles with 2 or more descendants, we found that the branching 
rates are constant throughout the cluster, apart from the initial transient. From this data 
one can calculate the average link length (i.e. the number of particles along a chain 
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between successive nodes of the tree). We find that this is approximately equal to 2.35 
particles. Particles with 2 descendants account for 96.5% of the branching in the cluster, 
the remaining being essentially due to branching into 3 branches. We conclude that, to a 
good approximation, DLA clusters are binary trees. It seems that under 100000 particles, 
clusters are not yet stabilized, in as much as the branching rates are concerned. For larger 
clusters, the branching rates are uniform outside this (relatively) small inner core. 

Next we calculated the Strahler orders of the branches in DLA clusters. In analysing these 
results, one should take into account two factors. The first is that the statistical fluctuations 
are larger for the higher Strahler orders. The reason is that the stream numbers decrease 
exponentially with the order, and that we deal with an object generated by a random process. 
The second factor is that an asymptotic value of a bifurcation ratio connot be achieved until 
the Strahler order in question is much smaller than the order of the root. This was seen for 
the Mandelbrot and Vicsek fractal tree, as well as for random binary trees. 

Figure 4 plots the bifurcation ratios Ei = Ni/Ni+l fori = 1,2,3,4 as a function of the 
number of particles in the cluster, using averaged data of 50 one million particle clusters. 
E1 bas settled to a constant value of 5.34. The ratios E2 and E3 seem to be attaining a 
different value, 5.2, while the ratio E4 is still in a transient, with relatively large fluctuations. 
Figure 5 shows a similar curve for a single 100 million particle cluster. From it we see that 
E1 takes an asymptotic value of 5.33, compatible with the result obtained from the smaller 
cluster, but clearly distinct from the value 5.2 to which Et for i = 2,3,4 seem to converge. 
The order of the root particle grows approximately as log, N .  

Note that the bifurcation ratios are larger in DLA than in any previously studied structure 
(of course one may artificially construct trees with larger bifurcation ratios). 

The first conclusion is that the topological branching structure of DLA clusters does have 
an asymptotic behaviour, as far as can be concluded from ow simulation results. The ratios 
of stream numbers converge. For all practical purposes, each asymptotic value is reached 
for a finite cluster size,.that increases with the Strahler order being considered. Except for 
the fact that the value of the first ratio differs from the value attained by the following 
ones, we could have asserted from figures 4 and 5 that the limit structure is topologically 
self-similar. 

5.4, I 1 I 

4.U 

i o 3  1 o4 i o5  106 
Number of parlicles 

Figure 4. Bifurcation ratios in a DLA cluster as it grows. Data are averaged over 50 dusters of 
1 million particles each. 
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Number of Particles 

Figure S. Bifurcation ratios in a DU cluster of 100 million particles, as it gmws. 

1.2 , 
I = 1  ' I I 
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(1,)=6.17 - 
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0 1 2 3 4 
Normalized branch length I I (Ii) 

Figure 6. Distributions of lengths of branches of different orders in a DU cluster of 1 million 
particles, averaged over 50 such clusters. Each dishibution is scaled by the corresponding 
average bmch length. 

Why is the value of the first bifurcation ratio higher then those of the other ratios? That 
is to say, why are there more first order branches than expected for a self-similar tree, as 
seems to be indicated by the other ratios? 

We calculated the distributions of branch lengths (measured by the number of particles 
in a branch) for branches of different orders. These were averaged over 50 DLA clusters of 
1 million paaicles each. Figure 6 shows these distributions for orders i = 1,2,3. Each 
distribution was scaled by the average length of branches (Zi) of the respective order. The 
average lengths of branches of orders i = 1,2,3,4 were, respectively, 2.05, 6.15, 19.65 
and 55.51, leading to an approximate law 

(Zi) - 2 x 3' . (13) 

The tails of the three distributions in figure 6 are quite well approximated by an exponential 



Very large DLA clusters and other branching fractals 283 

decay. The forms of the distributions differ for the low values. The first data point in 
the length distribution of first-order branches stands out, being significantly higher than for 
the other distributions. This data point represents branches of order 1 consisting of single 
particles. These are seen to be relatively abundant in the DLA clusters, and can account 
for the discrepancy between the value of the first bifurcation ratio B1 and the values of 
successive bifurcation ratios. Although we have not checked this explicitly, many of these 
short branches may be situated at threefold branchings in the tree. Screening by the other 
two branches may have prevented them from growing any longer. Discounting this excess 
of first-order branches of one particle length, the stream numbers of the remaining structure 
form a geometric series, indicating self-similar behaviour. 

5. Conclusion 

This paper investigated the complexity of branching structures using the Horton-Strahler 
ordering scheme. For topologically self-similar trees, the stream numbers should form a 
geometric series asymptotically. We have shown this explicitly for several self-similar fractal 
tree constructions. Our study of very large off-lattice DLA clusters shows that statistics of 
the Horton-Strahler ordering of their tree structure does indeed relax to a geometric series. 
This indicates that, from the point of view of their topological branching structure, very 
large DLA clusters behave as self-similar objects. By this it does not follow that these 
clusters are metrically self-similar. The analysis of other characteristics of these clusters 
[U] shows no convergence to the asymptotic behaviour expected from self-similarity. 
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Appendix 

This appendix describes shortly the methods used by the Yale group to simulate very large 
DLA clusters. Some of these methods have already been used previously by different authors, 
while others are, to our knowledge, novel. 

(i) Particles are set off on random walks from a circle of radius Rbih centred on the 
origin. Setting greater than I?,-, the radial extent of the cluster, is equivalent to 
sending the particles off from infinity, as the probability of first passage of this circle is 
uniform in the angular direction. 

(U) The step size of a particle is taken to be slightly smaller than the distance of the 
particle to the cluster, in a direction chosen at random. If the particle is at a distance from 
the cluster of less than 1/2Oth of a particle diameter, it is stuck to the nearest particle in the 
cluster. 
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(iii) A random walking particle that moves outside a circle of radius R d  (sR-) is 
projected back onto this circle using the Poisson kemel 

(R + d)’ - Rz 
( R  +d)’+ R2 - 2R(R+  COS@. K(R, d, e) = 

Thii kernel gives the probability that a random walker at a distance d from a circle of radius 
R cross this circle for the first time at an angle 0 relative to its original angular position. It 
allows particles to take large steps while guarding the same boundary conditions at infinity. 

(iv) Particle positions were represented by a lattice made of a hierarchical tree of square 
tiles. Each tile is subdivided into 4 tiles of relative side 1. The subdivision of a tile is 
initiated only if a particle from the cluster is present inside the tile. The smallest tile is 
eight particle diameters wide. The position of particles within this tile is specified to an 
accuracy of lL32nd of the particle diameter. 
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